Mathematical Physics

Modelling, Analysis and Control

STRATEGIC RESEARCH DIRECTIONS

Differential Equations

-Modelling physical phenomena -Analysis of the model -Numerical Simulation of the model

Mathematical Data Science

-Inverse Modelling -Filtering and control -High performance computing

Head of the Group

Arnold Heemink

APPLIED PARTIAL DIFFERENTIAL EQUATIONS

Henk Jongbloed

Marco Rozendaal

DYNAMICAL SYSTEMS AND CONTROL THEORY

Control & Max-Plus Algebra

Jacob van der woude

Wave Propagation

Anna Geyer

Reaction-diffusion systems

Lisanne Rens

Mathematical Biology

Johan Dubbeldam

MISCELLANEOUS

Fractional

Differential Equations

Kateryna Marynets

Modelling **Social organisms**

Alethea Barbaro

No photo available!

Network Dynamics, **Variational Methods**

Yves van Gennip

P.M. Visser

Kees Lemmens

Joost De Groot

Eva Coplakova

E. Van Elderen

MATHEMATICAL DATA SCIENCE

Variational Data Assimilation and Stochastic PDEs

Arnold Heemink

Ensemble Data Assimilation

Martin Verlaan

High Performance Computing and Machine Learning

HaiXiang Lin

Santiago Lopez

Amey Vasulkar

Henrique Guraneri

Xiaohui Wang

Tuo Deng

MATHEMATICAL DATA SCIENCE

NUMERICAL WEATHER PREDICTION

WEATHER FORECAST

UNCERTAINTY GROWS IN TIME

WEATHER OBSERVATIONS

DATA ASSIMILATION

Optimally combine dynamical models with observations to provide an estimate of the 'initial' state of the system which is better than what could be obtained from just the data or model alone.

PRIMARY GOALS

To make the best estimate of the initial state of the system from all the available information.

To quantify the uncertainty of our estimate of the initial state.

To train numerical model parameters based on observation data.

Depending on the application, it is also called state estimation, history matching, filtering, smoothing, inverse modelling.

PARAMETER ESTIMATION

SOME APPLICATIONS IN OUR GROUP

Air pollution due to volcanic eruption

Dust Storm in China

Storm surge prediction (Deltaworks) Netherlands

